Check out our White Paper Series!
A complete library of helpful advice and survival guides for every aspect of system monitoring and control.
1-800-693-0351
Have a specific question? Ask our team of expert engineers and get a specific answer!
Sign up for the next DPS Factory Training!
Whether you're new to our equipment or you've used it for years, DPS factory training is the best way to get more from your monitoring.
Reserve Your Seat TodayWhat's going on: Sometimes RTUs get locked into a cycle of recurring rebooting. Every time the RTU reboots, all alarms are cleared. And then the RTU detects an alarm, reports it ... and then reboots, starting the cycle all over again.
What's going on: Loose connectors make off-and-on contact, creating the intermittent alarm. To correct the problem, just screw the connector down tighter.
Note: If the wiring is OK, but the sensor regularly fluctuates, you can fix the problem by setting an alarm qualification time.
What's going on: Creating a loop with a paper clip may seem silly, but it's actually a great troubleshooting tool. By looping the transmit and receive pins, you can test whether the ports and connectors transmit and receive valid information. This is called a loopback test.
When you're setting up any kind of communication equipment, you'll probably have to troubleshoot data ports at some point. In our work with remote monitoring and control systems, DPS Tech Support reps frequently help our clients use loopback testing to troubleshoot RTUs that aren't reporting alarms correctly. Shorting pins can confirm that your device and its data port are working properly. With that established, you can move on to testing cables, protocols, and other equipment in your system.
A screwdriver is the right tool when you have an open connector with pins on 2 sides. A slot/flat screwdriver head will usually be the right width to bridge pins. You can even achieve a slight diagonal if you need connect 2 pins that are not directly across from one another. The classic example of this kind of port in remote monitoring is the amphenol connector. It has 50 pins, and each discrete alarm (contact closure) input is a pair of contact pins across from one another. It's very simple to use a screwdriver to short a pair of pins together to test your RTU's inputs during diagnostics.
A paper clip takes more time than a screwdriver, but it has much more versatility because it can be bent. You can use a screwdriver to short 2 female pin sockets on a DB9 serial port. You can connect virtually any 2 pins on a 50-pin amphenol connector. You'll simply need to shape the paper clip into an appropriate shape and insulate it from your hands with a napkin or some other insulator. You'll probably want to have at least a few extra paper clips for this kind of work, because metal fatigue will cause breakages after multiple bends in the same place.
Warning: Exercise caution when working with electricityThese tips are intended to be used only on data ports, where the electrical flow is minimal. You should always use industry-standard safety procedures when working with any electrical equipment. This is never more important than when you're operating on power-input circuits. Discussion of electrical safety techniques is beyond the scope of this article, but understand that there are risks whenever you work with electricity.